DARTS计算框架
给出问题答案
据邢毅研究组这篇发表在《自然—方法》上的论文介绍,DARTS由两部分构成:深度神经网络模块(DNN)和贝叶斯推断模块(BHT)。其中,DNN基于顺式序列特征和样品特异的RNA结合蛋白表达水平特征来预测差异剪接的结果;而BHT则通过整合实验样品测序数据本身和基于深度神经网络的先验概率来推断差异剪接的结果。
研究者在论文中强调称,与其他计算方法不同的是,在DARTS计算框架下,DNN不仅通过顺式序列特征来预测可变剪接的结果,而且还将样品中RNA结合蛋白的表达水平整合进了RNA可变剪接结果的预测中,增加了预测参数的维度。
DARTS的逻辑是,通过DNN对ENCODE和Roadmap数据库中大量RNA-seq结果的深度学习,能够获得高精度的预测值作为BHT中的贝叶斯先验概率,进而结合具体实验中RNA-seq的结果,来获得更为准确的差异剪接推断。
在研究实践中,邢毅研究组发现,在低通量RNA-seq文库中,通过使用DNN预测值进行强化分析后,能够达到比使用传统方法分析更高的准确度,并且这种提升在越低通量的文库中越明显;即使在高通量的RNA-seq文库中,使用DNN预测仍能发现在低表达基因中的可变剪接变化。而在过去,这些低表达基因的可变剪接变化在传统分析方法中往往会被忽略。
也就是说,研究结果证明了DARTS不仅提升了基于RNA-seq方法研究可变剪接的准确性,同时也提供了在低表达基因中研究可变剪接的研究手段。
歡迎光臨 比思論壇 (http://184.95.51.86/) | Powered by Discuz! X2.5 |